数量关系:
判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
解题思路和方法:
解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。
正反比例问题与前面讲过的倍比问题基本类似。
例1
修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?
解
由条件知,公路总长不变。
原已修长度∶总长度=1∶(1+3)=1∶4=3∶12
现已修长度∶总长度=1∶(1+2)=1∶3=4∶12
比较以上两式可知,把总长度当作12份,则300米相当于(4——3)份,从而知公路总长为300÷(4——3)×12=3600(米)
答:这条公路总长3600米。
例2
张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
解
做题效率一定,做题数量与做题时间成正比例关系
设91分钟可以做X应用题则有28∶4=91∶X
28X=91×4X=91×4÷28X=13
答:91分钟可以做13道应用题。
例3
孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
解
书的页数一定,每天看的页数与需要的天数成反比例关系
设X天可以看完,就有24∶36=X∶15
36X=24×15X=10
答:10天就可以看完。