当前位置: 小升初网 > 数学基础 > 正文

小升初经典必考应用题大全(含答案和解题思路)(2)

2018-01-07 10:02:30  来源: 小升初网  
字号:

  15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

  解题思路:

  根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

  答题:

  解:卡车的数量:

  360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)

  客车的数量:

  360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)

  答:可用卡车12辆,客车9辆。

  16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

  解题思路:

  根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

  答题:

  解:已修的天数:

  (720×3-1200)÷80=960÷80=12(天)

  公路全长:

  (720+80)×12+1200=800×12+1200=9600+1200=10800(米)

  答:这条公路全长10800米。

  17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

  解题思路:

  根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

  答题:

  解:12个纸箱相当木箱的个数:

  2×(12÷3)=2×4=8(个)

  一个木箱装鞋的双数:

  1800÷(8+4)=18000÷12=150(双)

  一个纸箱装鞋的双数:

  150×2÷3=100(双)

  答:每个纸箱可装鞋100双,每个木箱可装鞋150双

  18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

  解题思路:

  由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

  答题:

  解:水泥用完的天数:

  120÷(30×2-40)=120÷20=6(天)

  水泥的总袋数:

  30×6=180(袋)

  沙子的总袋数:

  180×2=360(袋)

  答:运进水泥180袋,沙子360袋。

  19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

  解题思路:

  根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

  答题:

  解:每个茶杯的价钱:

  90÷(4×5+10)=3(元)

  每个保温瓶的价钱:

  3×4=12(元)

  答:每个保温瓶12元,每个茶杯3元。

  20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

  解题思路:

  已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

  答题:

  解:第一个加数:

  572÷(10+1)=52

  第二个加数:

  52×10=520

  答:这两个加数分别是52和520。

  21. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?

  解题思路:

  由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

  答题:

  解:9-(16-9)=9-7=2(千克)

  答:桶重2千克。

  22. 一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

  解题思路:

  由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

  答题:

  解:(10-5.5)×2=9(千克)

  答:原来有油9千克。

  23. 用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

  解题思路:

  由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

  答题:

  解:(22-10)÷(5-2)=12÷3=4(千克)

  答:桶里原有水4千克。

  24. 小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

  解题思路:

  从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

  答题:

  解:小华有书的本数:

  (36-5×2)÷2=13(本)

  小红有书的本数:

  13+5×2=23(本)

  答:原来小红有23本,小华有13本。

  25. 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

  解题思路:

  由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

  答题:

  解:15×5÷(5-2)=25(千克)

  答:原来每桶油重25千克。

  26. 把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

  解题思路:

  把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

  答题:

  解:9÷(3-1)×(5-1)=18(分)

  答:锯成5段需要18分钟。

  27. 一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

  解题思路:

  女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

  答题:

  解:35÷(2-1)=35(人)

  女工原有:

  35+17=52(人)

  男工原有:

  52+35=87(人)

  答:原有男工87人,女工52人。

  28. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

  解题思路:

  由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

  答题:

  解:12×5÷(5+1)=10(千米)

  答:返回时平均每小时行10千米。

  29. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

  解题思路:

  由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

  答题:

  解:18÷(5+4)=2(小时)

  8×2=16(千米)

  答:狗跑了16千米。

  30. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

  解题思路:

  由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

  答题:

  解:总个数:

  (21+20+19)÷2=30(个)

  白球:30-21=9(个)

  红球:30-20=10(个)

  黄球:30-19=11(个)

  答:白球有9个,红球有10个,黄球有11个。